MAX2045/MAX2046/MAX2047 Evaluation Kits
Table 1. Required Test Equipment
EQUIPMENT QTY DESCRIPTION
4) Configure the network analyzer to measure S21. The
analyzer should read approximately 6.2dB gain at f IN
= 2140MHz (MAX2045), 6.6dB gain at f IN =
Power supply
Power supplies
Current sources
(optional)
Low-noise RF signal
generators
1
2
2
2
Capable of delivering up to
250mA at 4.75V to 5.25V
Capable of swinging from 0
to +5.5V
Capable of delivering 5mA of
current
HP 8648B or equivalent
1900MHz (MAX2046), and 8.1dB gain at f IN =
915MHz (MAX2047).
5) Changing the current source value changes the
magnitude of the gain. To adjust the phase, use sep-
arate current sources on the II1 and IQ1 terminals.
Detailed Description
The EV kits come with all necessary components for
easy testing. For each kit, make sure all ground pins on
Network analyzer 1 HP 8753ES or equivalent
Ammeter/voltmeters 2 —
50 ? SMA cables 2 —
Testing the Supply Current
1) If available, set the current limit of the power supply
to 250mA. Do not turn on the supply. Connect the
DC supply set to 5V, through an ammeter, to the
VCC and GND terminals on the EV kit. Use a volt-
meter to verify that the voltage is at V CC = 5V.
2) Turn on the DC supply; the supply current should
read approximately 160mA.
Testing the Gain (Single-Ended Voltage Mode)
1) Connect a DC supply set to +3.2V to the VI1 and
VQ1 terminals (Figure 1).
2) Using a calibrated network analyzer, connect port 1
to the RF_IN terminal (SMA J1) and port 2 to the
RF_OUT terminal (SMA J2).
3) Configure the network analyzer to measure S21. The
analyzer should read approximately 7dB gain at f IN
= 2140MHz (MAX2045), 7.4dB gain at f IN =
1900MHz (MAX2046), and 8.4dB gain at f IN =
915MHz (MAX2047).
4) Changing the DC supply on the VI1 and VQ1 termi-
nals changes the magnitude of the gain. To adjust
the phase, use separate DC supplies on the VI1 and
VQ1 terminals.
Testing the Gain (Current Mode)
1) Configure the evaluation kits for current mode (see
the Detailed Description section).
2) Connect a current source set to 4mA to the II1 and
IQ1 terminals. Leave II2, IQ2, and all voltage-control
pins open (Figure 1).
3) Using a calibrated network analyzer, connect port 1
to the RF_IN terminal (SMA J1) and port 2 to the
RF_OUT terminal (SMA J2).
the 20-lead header are connected to ground. The
REFOUT voltage can be monitored from pins 17 and 18
on the 20-lead header by installing a 0 ? resistor for R6.
To operate the device in differential voltage-control
mode, remove R5 and R3, and install 0 ? resistors for
R2 and R4. Figure 1 shows the connections on the 20-
pin header corresponding to the voltage- and current-
control inputs. Using this configuration, an external DC
source can also be applied to VI2 and VQ2 for single-
ended operation using an external regulated voltage.
For current-mode operation, leave the VI and VQ (header
pins 1, 2, 5, and 6) open, and remove R3 and R5.
Bias Resistor
The bias resistor value (280 ? ) was optimized during
characterization at the factory. This value should not be
adjusted. If the 280 ? ( ± 1%) resistor is not readily avail-
able, substitute a standard 280 ? ( ± 5%) resistor.
On-Chip Reference Voltage
An on-chip, 2.5V reference voltage is provided for sin-
gle-ended control mode. REFOUT is connected,
through R3 and R5, to VI2 and VQ2 to provide a stable
reference voltage. The equivalent output resistance of
the REFOUT pin is approximately 80 ? . REFOUT is
capable of sourcing 1mA of current with <10mV drop
in voltage.
Capacitors
Ceramic capacitors C16 and C17 provide bypass on
the supply. Place C16 as close to the part as possible
for high-frequency bypassing. C4 – C11 are bypass
capacitors for the control inputs. C1 and C14 are DC-
blocking capacitors for the on-board baluns. DC-block-
ing capacitors prevent DC current from flowing into the
transformers and can be used as part of the matching
circuit. Capacitors C13 and C15 are used to provide an
RF ground for transformer T2. Capacitor C12 is used to
bypass the 2.5V reference in case the reference is
used. As the differential RF outputs are relatively high
_______________________________________________________________________________________
3
相关PDF资料
MAX2051ETP+T IC UP/DOWNCONVERSION MIXR 20TQFN
MAX2055EUP+TD IC ADC DRVR/AMP VAR GAIN 20TSSOP
MAX2055EVKIT EVAL KIT FOR MAX2055
MAX2056EVKIT EVAL KIT FOR MAX2056
MAX2057EVKIT EVAL KIT FOR MAX2057
MAX2058EVKIT EVAL KIT FOR MAX2058
MAX2059ETL+ IC DVGA SPI HI LIN 40-TQFN
MAX2062ETM+ IC VGA ANALOG/DIGITAL 48TQFN-EP
相关代理商/技术参数
MAX2048ETP+ 功能描述:上下转换器 1.6-3.9GHz Up/Down Conversion Mixer RoHS:否 制造商:Texas Instruments 产品:Down Converters 射频:52 MHz to 78 MHz 中频:300 MHz LO频率: 功率增益: P1dB: 工作电源电压:1.8 V, 3.3 V 工作电源电流:120 mA 最大功率耗散:1 W 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:PQFP-128
MAX2048ETP+T 功能描述:上下转换器 1.6-3.9GHz Up/Down Conversion Mixer RoHS:否 制造商:Texas Instruments 产品:Down Converters 射频:52 MHz to 78 MHz 中频:300 MHz LO频率: 功率增益: P1dB: 工作电源电压:1.8 V, 3.3 V 工作电源电流:120 mA 最大功率耗散:1 W 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:PQFP-128
MAX204C/D 功能描述:RS-232接口集成电路 RoHS:否 制造商:Exar 数据速率:52 Mbps 工作电源电压:5 V 电源电流:300 mA 工作温度范围:- 40 C to + 85 C 安装风格:SMD/SMT 封装 / 箱体:LQFP-100 封装:
MAX204CPE 功能描述:RS-232接口集成电路 RoHS:否 制造商:Exar 数据速率:52 Mbps 工作电源电压:5 V 电源电流:300 mA 工作温度范围:- 40 C to + 85 C 安装风格:SMD/SMT 封装 / 箱体:LQFP-100 封装:
MAX204CPE+ 功能描述:RS-232接口集成电路 5V RS-232 Tcvr w/0.1uF External Cap RoHS:否 制造商:Exar 数据速率:52 Mbps 工作电源电压:5 V 电源电流:300 mA 工作温度范围:- 40 C to + 85 C 安装风格:SMD/SMT 封装 / 箱体:LQFP-100 封装:
MAX204CUE 功能描述:RS-232接口集成电路 RoHS:否 制造商:Exar 数据速率:52 Mbps 工作电源电压:5 V 电源电流:300 mA 工作温度范围:- 40 C to + 85 C 安装风格:SMD/SMT 封装 / 箱体:LQFP-100 封装:
MAX204CWE 功能描述:RS-232接口集成电路 RoHS:否 制造商:Exar 数据速率:52 Mbps 工作电源电压:5 V 电源电流:300 mA 工作温度范围:- 40 C to + 85 C 安装风格:SMD/SMT 封装 / 箱体:LQFP-100 封装:
MAX204CWE+ 功能描述:RS-232接口集成电路 5V RS-232 Tcvr w/0.1uF External Cap RoHS:否 制造商:Exar 数据速率:52 Mbps 工作电源电压:5 V 电源电流:300 mA 工作温度范围:- 40 C to + 85 C 安装风格:SMD/SMT 封装 / 箱体:LQFP-100 封装: